Cheat Sheet Module 5#
Notations#
Factors - \(F_A\), \(F_B\), and so on
CTQs - \(x\) (as always)
‘Levels’ in factors - \(\ell_A\), \(\ell_B\)
Hypothesis Testing on Two-Samples#
\(x_1 \sim \mathcal{N}(\mu_1,\sigma_1)\), \(x_2 \sim \mathcal{N}(\mu_2,\sigma_2)\)
\(H_0: |\mu_1 - \mu_2| = \Delta_0\)
Known \(\sigma_1^2\) and \(\sigma_2^2\); Two-sample Z-test
\(Z_0 = |\frac{\bar{x}_1 - \bar{x}_2| - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} }}\)Unknown \(\sigma_1^2\) and \(\sigma_1^2\); Two-sample t-test (d.o.f \(n_1 + n_2 - 2\))
\(t_0 = \frac{|\bar{x}_1 - \bar{x}_2| - \Delta_0}{s_p\sqrt{\frac{1}{n_1} + \frac{1}{n_2} }}\) where \(s_p = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2 }{n_1 + n_2 -2}}\)
* $H_a: \mu_1 - \mu_2 \neq \Delta_0 \implies $ Two-sided
* $H_a: \mu_1 - \mu_2 > \Delta_0 \implies $ One-sided (Upper-Tail)
* $H_a: \mu_1 - \mu_2 < \Delta_0 \implies $ One-sided (lower-Tail)
Hypothesis Testing on More than Two-Samples (Single factor)#
Notations#
\(x_{ij}\) - \(i^{th}\) level, \(j^{th}\) observation
Let \(\ell\) denote the number of levels.
Recollect: \(n\) observations form one sample.
Assume we collect same sample size (\(n\)) at all levels.
\(H_0: \mu_1 = \mu_2 = ... = \mu_a \), \(H_a:\)d At least one \(\mu_i\) is different.
Reject \(H_0\) if \(F_0 > F_{\alpha,\ell-1,\ell(n-1)}\)
\(F_0 = \frac{SS_{levels}/(\ell-1)}{SS_{E}/(\ell(n-1))}\)
\(MS_{levels} = SS_{levels}/(\ell-1)\)
\(MS_E = SS_{E}/(\ell(n-1))\)
Linear Statistical Model (“view”)
\(x_{ij} = \mu + \tau_i + \epsilon_{ij}\) \(\forall i\)
\(\mu\) - “base” mean
\(\tau_{i}\) - Effect of a level (also known as “treatment”)
\(\epsilon_{ij}\) - Random Effect (or Random Error)
\(SS_{levels} = n \sum_{i=1}^{\ell} (\bar{x}_{i\cdot} - \bar{x}_{\cdot\cdot})^2\)
\(SS_{Errors} = SS_E = \sum_{i=1}^{\ell} \sum_{j=1}^{n} ({x}_{ij} - \bar{x}_{\cdot\cdot})^2\)
\(SS_{Total} = SS_T = SS_{levels} + SS_E\)
ANOVA Table (Single Factor Experiment)#
Source of Variation |
Sum of Squares |
Degree of Freedom |
Mean Square |
\(F_0\) |
|---|---|---|---|---|
Levels |
\(SS_{levels}\) |
\(\ell-1\) |
\(MS_{levels}\) |
\(\frac{MS_{levels}}{MS_E}\) |
Error |
\(SS_{E}\) |
\(\ell(n-1)\) |
\(MS_{E}\) |
|
Total |
\(SS_{T}\) |
\(\ell n-1\) |
Hypothesis Testing for Varying Factors#
\(H_0\): Corresponding Factor has no effect on the CTQ;
\(H_a\): Corresponding Factor has an effect on the CTQ
Reject \(H_0\) if \(F_0 > F_{\alpha,dof1,dof2}\)
dof1 - Numerator d.o.f., dof 2- Denominator d.o.f.
ANOVA Table for Two-factors (A and B)#
Source of Variation |
Sum of Squares |
Degree of Freedom |
Mean Square |
\(F_0\) |
Decision |
|---|---|---|---|---|---|
A |
\(SS_{A}\) |
\(\ell_A-1\) |
\(MS_{A}\) |
\(\frac{MS_{A}}{MS_E}\) |
Factor A effect |
B |
\(SS_{B}\) |
\(\ell_B-1\) |
\(MS_{B}\) |
\(\frac{MS_{B}}{MS_E}\) |
Factor B effect |
AB (interaction) |
\(SS_{AB}\) |
\((\ell_A-1)(\ell_B-1)\) |
\(MS_{AB}\) |
\(\frac{MS_{AB}}{MS_E}\) |
AB interaction effect |
Error |
\(SS_{E}\) |
\(\ell_A\ell_B(n-1)\) |
\(MS_{E}\) |
||
Total |
\(SS_{T}\) |
\(\ell_A \ell_B n-1\) |
\(SS_{T} = \sum_{i=1}^{\ell_A}\sum_{j=1}^{\ell_b} \sum_{k=1}^{n} (x_{ijk} - \bar{x}_{...})^2\)
\(SS_A = \ell_Bn\sum_{i=1}^{\ell_A} (\bar{x}_{i..} - \bar{x}_{...})^2\)
\(SS_B = \ell_An \sum_{i=1}^{\ell_B} (\bar{x}_{.j.} - \bar{x}_{...})^2\)
\(SS_{AB} = n\sum_{i=1}^{\ell_A}\sum_{j=1}^{\ell_B} (\bar{x}_{ij.} - \bar{x}_{i..}- \bar{x}_{.j.} + \bar{x}_{...})^2\)
\(SS_{E} = SS_{T}- SS_{A} - SS_{B} - SS_{AB} = \sum_{i=1}^{\ell_A}\sum_{j=1}^{\ell_B}\sum_{k=1}^{n}(x_{ijk} - \bar{x}_{ij.})^2 \)
Linear Regression and Response Surface#
\(\hat{x} = \beta_0 + \beta_A f_A + \beta_B f_B +\beta_{AB}f_A f_B\)
\(\beta_0 = \bar{x}_{...}\)
For \(2^k\) Factorial Experiments: \(\beta_A = \frac{\bar{x}_{A^+} - \bar{x}_{A^-}}{2}\)
For \(2^k\) Factorial Experiments: \(\beta_B = \frac{\bar{x}_{B^+} - \bar{x}_{B^-}}{2}\)
For \(2^k\) Factorial Experiments: \(\beta_{AB} = \frac{(\frac{[\bar{x}_{A^+B^+}) - (\bar{x}_{A^-B^+})] - [(\bar{x}_{A^+B^-}) - (\bar{x}_{A^-B^-})]}{2})}{2}\)
\(\frac{\partial \hat{x}}{\partial f_A} = \beta_A + \beta_{AB} f_B\)
\(\frac{\partial \hat{x}}{\partial f_B} = \beta_B + \beta_{AB} f_A\)
Steepest Ascent (Maximizing the CTQ):
\(\Delta = c (\frac{\partial \hat{x}}{\partial f_A},\frac{\partial \hat{x}}{\partial f_B}) \)
Steepest Descent (Minimizing the CTQ):
\(\Delta = - c (\frac{\partial \hat{x}}{\partial f_A},\frac{\partial \hat{x}}{\partial f_B}) \)
Design Points
Center \(+ t \Delta\), where \(t = 1,2,3,...,\)