Cheat Sheet Module 1#
*** - denotes IMPORTANT
Basic Probability Notations#
\(p\) - Probability or Probability Mass Function (pmf, attributes, discrete)
\(f\) - Probability Distribution Function (pdf, variables, continuous) ***
\(F\) - Cumulative Distribution Function (cdf)
\(\Omega\) - Support set (sometimes called domain) (pronounced as “Omega”)
\(\omega\) - an element in the support (still pronounced as “omega”)
\(\omega \in \Omega \implies\) element omega belongs to the support omega.
\(\forall \implies\) reads as and means “for all”
Basic Probability Definitions#
\(F(x) = p(\omega \leq x) = \int_{-\infty}^{x}f(\omega)d\omega\) (integral will convert to summation for attributes/pmfs)
\(p(a \leq x \leq b) = \int_{a}^{b}f(x)dx\) (integral will convert to summation for attributes/pmfs)
\(p(\Omega) = \int_{\Omega} f(x)dx = 1\)
Standard (five) Distributions#
1. Uniform Distribution \(\mathcal{U}(a,b)\)#
Variable (continuous)
\(a\) - lower limit or bound, \(b\)- upper limit or bound
\(f(x) = \frac{1}{b-a} \,\, \forall \,\, a \leq x \leq b\) (\(0\) otherwise)
\(F(x) = \begin{cases} 0, \,\, \text{if} \,\, x \leq a \\ \frac{x-a}{b-a}, \,\, \text{if} \,\, a \leq x \leq b \\ 1, \,\, \text{if} \,\, x \geq b \end{cases}\)
2. Normal Distribution \(\mathcal{N}(\mu,\sigma^2)\) ***#
Variable (continuous)
\(\mu\) - Mean, \(\sigma^2\)- Variance
\(f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2 \sigma^2}) \,\, \forall \,\, x \in (-\infty,\infty) \)
\(F(x)\) - use standard normal tables using z-score!
*** Standard Normal Score or z-score \(z(x) = \frac{x - \mu}{\sigma}\)
*** \(\Phi(x)\) - cdf of standard normal distribution \(\mathcal{N}(0,1)\)
*** \(F(x) = \Phi(z(x))\)
3. Exponential Distribution \(Exp.Dist.(\lambda)\) (used mostly in reliability engineering)#
Variable (continuous)
\(f(x) = \lambda \exp(-\lambda x) \,\, \forall \,\, x \in [0,\infty) \)
\(F(x) = 1 - \exp(-\lambda x)\)
4. Binomial Distribution \(\mathcal{B}(N,p)\)#
Attribute (discrete)
\(N\) - Number of Trials, \(p\) - probability of success in one trial
\(p(x) = \binom{N}{x} p^{x}(1-p)^{N-x} \,\, \forall \,\, x \in \{0,1,2,..., N\} \)
\(F(x) = \sum_{i=0}^{x} \binom{N}{i} p^{i}(1-p)^{N-i}\)
5. Poisson Distribution \(Poisson(\lambda)\)#
Attribute (discrete)
\(p(x) = \frac{e^{-\lambda} \lambda^x}{x!} \,\, \forall \,\, x \in \{0,1,2,..., \infty\} \)
\(F(x) = \sum_{i=0}^{x} \frac{e^{-\lambda} \lambda^x}{x!} \)
Other Distributions (in this course)#
6. Bernoulli distribution \(Bernoulli(p)\)#
Attribute (Discrete), \(x \in \{0,1\}\)
\(p\) is the probability of success, i.e., probability of getting 1.
\((1-p)\) is the probability of failure, i.e., probability of getting 0.
7. Students’ t-distribution \(t(n-1)\)#
Variable (continuous), \(x \in (-\infty,\infty)\)
\(n\) is the sample size typically
\(n-1\) degrees of freedom
8. Chi-squared Distribution \(\chi^2(n-1)\)#
Variable (continuous) but can only take positive real numbers \(x \in [0,\infty)\)
\(n\) is the sample size typically
\(n-1\) degrees of freedom
Sample from a Population Distribution#
Each sample has an associated size \(n\)
To draw a histogram of the sample, use approximately \(\sqrt{n}\) bins.